GUIDE TO COMPOSITES

PDF Publication Title:

GUIDE TO COMPOSITES ( guide-to-composites )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 046

Figure 28 – Comparative core costs 5.4.2.3 Thermoplastic honeycomb Core materials made of other thermoplastics are light in weight, offering some useful properties and possibly also making for easier recycling. Their main disadvantage is the difficulty of achieving a good interfacial bond between the honeycomb and the skin material, and their relatively low stiffness. Although they are rarely used in highly loaded structures, they can be useful in simple interior panels. The most common polymers used are: ABS - for rigidity, impact strength, toughness, surface hardness and dimensional stability Polycarbonate - for UV-stability, excellent light transmission, good heat resistance & self-extinguishing properties Polypropylene - for good chemical resistance Polyethylene - a general-purpose low-cost core material 5.4.2.4 Wood Wood can be described as ‘nature’s honeycomb’, as it has a structure that, on a mi- croscopic scale, is similar to the cellular hexagonal structure of synthetic honeycomb. When used in a sandwich structure with the grain running perpendicular to the plane of the skins, the resulting component shows properties similar to those made with man-made honeycombs. However, despite various chemical treatments being available, all wood cores are susceptible to moisture attack and will rot if not well surrounded by laminate or resin. 5.4.2.5 Balsa The most commonly used wood core is end-grain balsa. Balsa wood cores first appeared in the 1940’s in flying boat hulls, which were aluminium skinned and balsa-cored to withstand the repeated impact of landing on water. This performance led the marine industry to begin using end-grain balsa as a core material in FRP construction. Apart from its high compressive properties, its advantages include being a good thermal insulator offering good acoustic absorption. The material will not deform when heated 44 - GTC-6-0417

PDF Image | GUIDE TO COMPOSITES

PDF Search Title:

GUIDE TO COMPOSITES

Original File Name Searched:

guide-to-composites.pdf

DIY PDF Search: Google It | Yahoo | Bing

5,000 BF Shipping Container Lumber Dry Kiln For Quality Lumber The 5,000 BF container kiln consists of one 40 foot high-cube aluminum shipping container... More Info

Shipping Container Lumber Dry Kilns by Global Energy Global Energy designed and developed the container kiln back in 1991. The purpose is to give access to portable sawmill owners, furniture makers, and small business the value added profit of dry kiln lumber and quality hardwoods... More Info

Vacuum Kiln Conversion Kit for Lumber and Wood Dry Kilns Convert your existing conventional dry kiln into a fast drying vacuum kiln. Similar to vacuum bagging in the boat building and aircraft industry, we have come up with a proprietary process which allows you to build a very simple vacuum kiln at a fraction of the price, and without the intensive conventional metal chamber structure... More Info

Vacuum Pump Cart System for Bagging Clamping Wood Drying and more Vacuum Cart with 2HP Pump and Dual Pistons with multiple multiplex vacuum ports and liquid reservoir... More Info

Vacuum Bagging Basics Vacuum bagging is a method of clamping, which has traditionally been used in the composites industry, but can also be used for vacuum drying materials, including wood products... More Info

CONTACT TEL: 608-238-6001 Email: greg@globalmicroturbine.com (Standard Web Page)